3.1.97 \(\int \frac {x}{\sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [97]

Optimal. Leaf size=220 \[ -\frac {\tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {f} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {\tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {f} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \]

[Out]

-1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1
/2))^(1/2))/f^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*
f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))/f^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 220, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {1047, 738, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {f} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {\tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {f} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-1/2*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sq
rt[a + b*x + c*x^2])]/(Sqrt[f]*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*
Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])]/(2*Sqrt[f]*Sqrt[c*d + b
*Sqrt[d]*Sqrt[f] + a*f])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx &=\frac {1}{2} \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx+\frac {1}{2} \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx\\ &=-\text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )-\text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{2 \sqrt {f} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {f} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}-\frac {\tanh ^{-1}\left (\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{2 \sqrt {f} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {f} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.24, size = 149, normalized size = 0.68 \begin {gather*} -\frac {1}{2} \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {a \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-\log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{-b \sqrt {c} d+2 c d \text {$\#$1}+a f \text {$\#$1}-f \text {$\#$1}^3}\&\right ] \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-1/2*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4 & , (a*Log[-(Sqrt[c]*x) + Sqr
t[a + b*x + c*x^2] - #1] - Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(-(b*Sqrt[c]*d) + 2*c*d*#1 + a
*f*#1 - f*#1^3) & ]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(353\) vs. \(2(164)=328\).
time = 0.13, size = 354, normalized size = 1.61

method result size
default \(\frac {\ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 f \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}+\frac {\ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 f \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\) \(354\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/2/f/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f
)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(
1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f))+1/2/f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*
(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d
*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f)
)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 2753 vs. \(2 (164) = 328\).
time = 0.73, size = 2753, normalized size = 12.51 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

1/4*sqrt((c*d + a*f + (c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2
 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*
f^3 - (b^2 - 2*a*c)*d*f^2))*log((2*b*c*d*x + b^2*d + 2*(b^2*d*f - (c^3*d^3*f + a^3*f^4 - (b^2*c - 3*a*c^2)*d^2
*f^2 - (a*b^2 - 3*a^2*c)*d*f^3)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b
^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d + a*f + (c^2*d^2*f
+ a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*
b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)) - (2*
a*c^2*d^2*f + 2*a^3*f^3 - 2*(a*b^2 - 2*a^2*c)*d*f^2 + (b*c^2*d^2*f + a^2*b*f^3 - (b^3 - 2*a*b*c)*d*f^2)*x)*sqr
t(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*
b^2 - 2*a^3*c)*d*f^4)))/x) - 1/4*sqrt((c*d + a*f + (c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4
*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*
c)*d*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2))*log((2*b*c*d*x + b^2*d - 2*(b^2*d*f - (c^3*d^3*f + a^
3*f^4 - (b^2*c - 3*a*c^2)*d^2*f^2 - (a*b^2 - 3*a^2*c)*d*f^3)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*
a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))*sqrt(c*x^2 + b*x + a)*
sqrt((c*d + a*f + (c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2
*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*f^3
- (b^2 - 2*a*c)*d*f^2)) - (2*a*c^2*d^2*f + 2*a^3*f^3 - 2*(a*b^2 - 2*a^2*c)*d*f^2 + (b*c^2*d^2*f + a^2*b*f^3 -
(b^3 - 2*a*b*c)*d*f^2)*x)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c +
 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/x) + 1/4*sqrt((c*d + a*f - (c^2*d^2*f + a^2*f^3 - (b^2 -
2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*
d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2))*log((2*b*c*d*x + b^2*d +
 2*(b^2*d*f + (c^3*d^3*f + a^3*f^4 - (b^2*c - 3*a*c^2)*d^2*f^2 - (a*b^2 - 3*a^2*c)*d*f^3)*sqrt(b^2*d/(c^4*d^4*
f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*
f^4)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d + a*f - (c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4
*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d
*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)) + (2*a*c^2*d^2*f + 2*a^3*f^3 - 2*(a*b^2 - 2*a^2*c)*d*f^2
+ (b*c^2*d^2*f + a^2*b*f^3 - (b^3 - 2*a*b*c)*d*f^2)*x)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)
*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/x) - 1/4*sqrt((c*d + a*f - (
c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (
b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f
^2))*log((2*b*c*d*x + b^2*d - 2*(b^2*d*f + (c^3*d^3*f + a^3*f^4 - (b^2*c - 3*a*c^2)*d^2*f^2 - (a*b^2 - 3*a^2*c
)*d*f^3)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f
^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))*sqrt(c*x^2 + b*x + a)*sqrt((c*d + a*f - (c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*
c)*d*f^2)*sqrt(b^2*d/(c^4*d^4*f + a^4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*
f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))/(c^2*d^2*f + a^2*f^3 - (b^2 - 2*a*c)*d*f^2)) + (2*a*c^2*d^2*f + 2*a^3*f^3
 - 2*(a*b^2 - 2*a^2*c)*d*f^2 + (b*c^2*d^2*f + a^2*b*f^3 - (b^3 - 2*a*b*c)*d*f^2)*x)*sqrt(b^2*d/(c^4*d^4*f + a^
4*f^5 - 2*(b^2*c^2 - 2*a*c^3)*d^3*f^2 + (b^4 - 4*a*b^2*c + 6*a^2*c^2)*d^2*f^3 - 2*(a^2*b^2 - 2*a^3*c)*d*f^4)))
/x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x}{- d \sqrt {a + b x + c x^{2}} + f x^{2} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(x/(-d*sqrt(a + b*x + c*x**2) + f*x**2*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument ValueWarning, integra
tion of abs

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x}{\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(x/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________